Courtesy Freshwaters Illustrated

Developing a Common Understanding for the State-of Knowledge and Assumptions for Managing and Restoring the Willamette River Basin

J. Rose Wallick¹, Rachel Laird², Richard Piaskowski^{2,} Tobias Kock³

¹U.S. Geological Survey Oregon Water Science Center
²U.S. Army Corps of Engineers, Portland District
³U.S. Geological Survey, Western Fisheries Research Center

Outline

- Intro and background
- Common assumptions
- New data available
- Symposium plans
- Examples of science synthesis for symposium


Overarching Approach

"Split-Basin" strategy

• Wild fish above dams, mix of hatchery & wild fish below

Highest priority

- Fish passage
- Pre-spawning mortality
- Downstream habitat attributes

Opportunities, uncertainties and adaptive management Considering present-day river conditions,

- What are realistic expectations for restoration?
- Where is uncertainty/risk greatest?
- What opportunities are there for adaptive management?

What have we learned since 2008 to help answer these questions?

What assumptions are commonly made regarding:

- Floodplain inundation
- Channel complexity
- Off-channel habitat
- Non-native fish
- Optimizing river flows
- Salmon and steelhead productivity
- Contribution of life history pathways to adult recruitment
- Density dependent mortality in salmon and steelhead

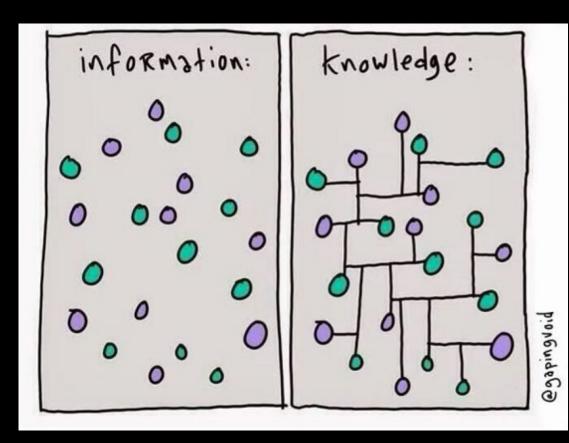
We now have building blocks to revisit assumptions and address recurring questions

Examples of research 2008-2021

Fisheries:

- Salmon and steelhead research (many topics evaluated by UI, PNNL, USGS, and many others)
- Native fish communities (OSU, ODFW)
- Habitat capacity (NOAA, USGS)
- Genetics (OSU, ODFW)
- Science framework for ecological flows (SWIFT framework; USGS)

Stream Temperature and Coldwater Refuges:


- Thermal conditions in reservoirs and below dams (USGS, USACE)
- Off-channel water quality (USGS, OSU...)
- Coldwater refuges (USGS, OSU...)

Spawning and Rearing Habitat Availability


- PHAB-Sim studies in tributaries (R2, RDG)
- 2D hydraulic and habitat modeling (USGS)

Geomorphology and Restoration Monitoring

- Floodplain geomorphology, floodplain forests (OSU, UO, USGS)
- Restoration effectiveness Monitoring (USGS, PSU, BSWCD, USFS)

Assembling our knowledge foundation: Willamette River Science Symposium

Killdeer nest, Upper Willamette River

Willamette River Science Symposium

Science Symposium planned for 2022 will:

- Review management assumptions
- Synthesize existing studies and 'on the ground' knowledge
- Identify risks and uncertainties surrounding different assumptions
- Identify new hypotheses
- Identify key questions that warrant further examination

Broader interests/goals:

- Create 'community of practice' among groups, conducting and utilizing river science
- Summarize information in one place
- Establish an adaptive management framework for annual application

Symposium part of a multi-pronged strategy to create a 'common knowledge foundation' to inform the management of Willamette River fisheries and floodplains

State of the Willamette

River Habitat Restoration Practice, Science and Funding

A workshop for Willamette Basin restoration partners to share perspectives on the current state of river restoration practice, science, funding, and ways to improve restoration outcomes from local to regional scales.

2020 State of the Willamette Agenda

Keynote Speakers:

Ken Bierly, former OWEB - Dance with the Willamette River

Stan Gregory, OSU – Charting a Course for Conversation and Restoration of the Willamette River

Willamette native fishes: emerging science and monitoring findings

Luke Whitman, ODFW – Native Spring Chinook and Winter Steelhead in the Upper Willamette River

Hannah Barrett, OSU – Investigating Thermal Refuge Use by Willamette River Coastal Cutthroat Trout

Brian Bangs, ODFW – Oregon Chub (and Other Off-Channel Habitat Fish)

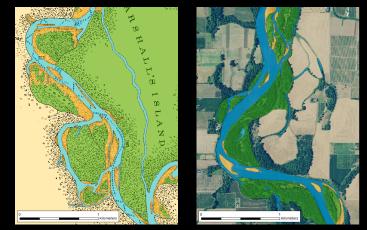
Greg Taylor, USACE – Salmon Response to Temperature

Floodplain/channel habitats, connectivity and complexity: on-the-ground experiences and science perspectives

James White, USGS – Where, When, and How Much Salmonid Habitat is Available on the Willamette River?

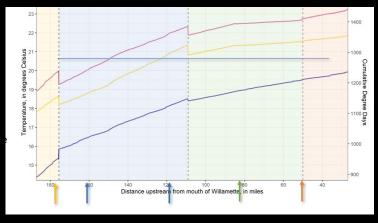
Jed Kaul, Long Tom Watershed Council – Floodplain Reconnection at Snag Boat Bend, Where There is a Will, is There a Way?

Laurel Stratton and Krista Jones, USGS $\,$ – Water Temperature and Coldwater Refuges in the Willamette River Basin.


 ${\rm Rich}\ {\rm Miller}, {\rm PSU}\ -$ Effects of Aquatic Plants on Water Quality in Willamette River Off-Channel Habitats

Collin McCandless, Calapooia Watershed Council – Construction Ahead, Proceed With Caution

2020 State of the Willamette presentations: https://bentonswcd.org/state_of_the_willamette/


Examples of research to synthesize at symposium

River channel and streamflow

Gordon and others, 1895 and 2016 mapping, in progress.

Thermal conditions

Stratton and Rounds, Thermal Landscape; in press

Habitat conditions

White and others, Rearing habitat modeling, in progress

Movement, survival, life histories

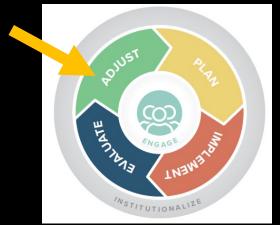
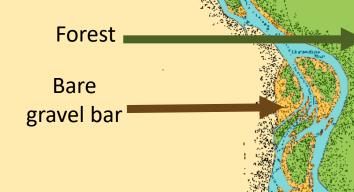


Image courtesy Freshwaters Illustrated

Effects of dam operations

Adaptive management

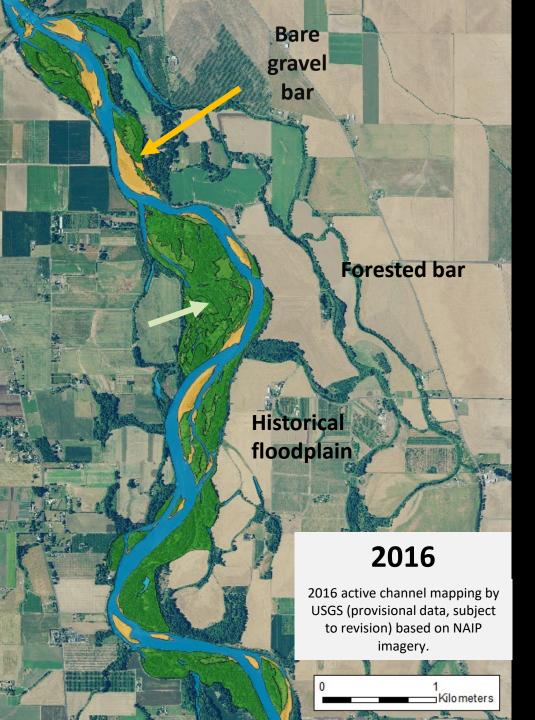


USACE image

Figure from Warren and others, 2019

Historical Channel Change: Upper Willamette River 1895-2016 Marshall Island

Kilometers



Wetted channel

1895

USACE navigational maps. Wetted channels and forested islands mapped by PNWERC. Bare gravel bars mapped by USGS (provisional mapping, subject to revision).

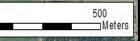
Historical Channel Change: Middle Willamette River 1895-2016 Windsor Island, near Salem

Forest	
FUIESL	
Bare _	
gravel bar	
•	
Wetted	
channel	
en annier	

1823 17 *2*8

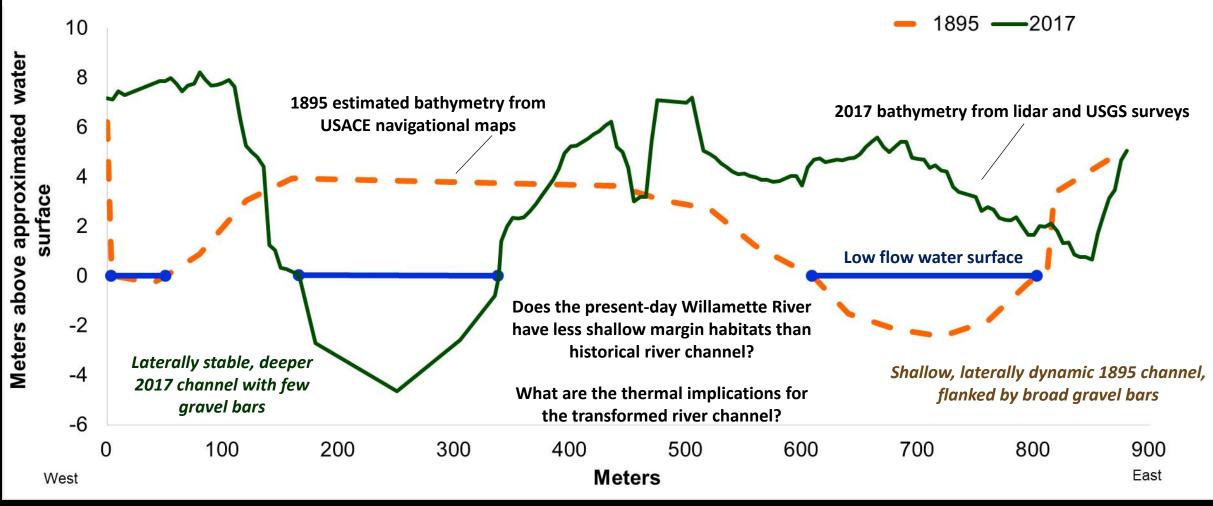
1895

USACE navigational maps. Wetted channels and forested islands mapped by PNWERC. Bare gravel bars mapped by USGS (provisional mapping, subject to revision)


500 Meters

Ù

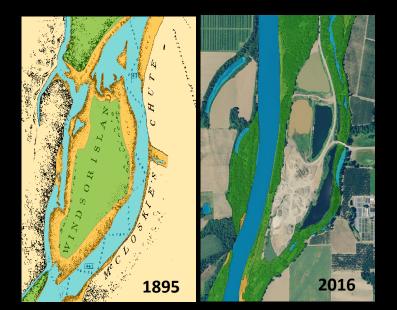
What are the implications for rearing habitat?

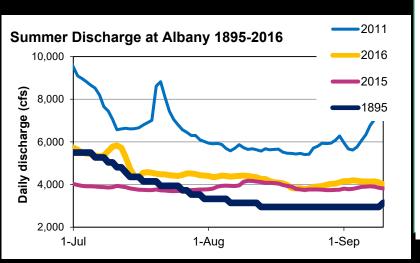

2016

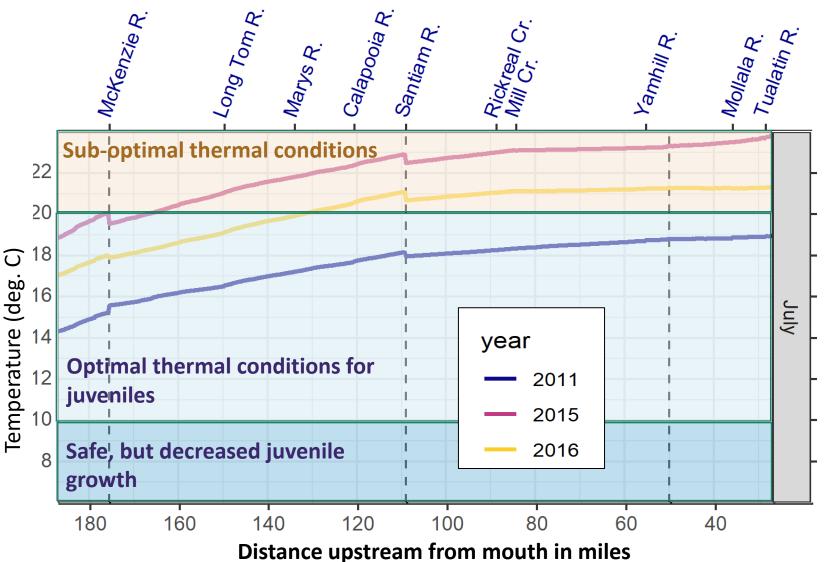
2016 active channel mapping by USGS (provisional data, subject to revision) based on NAIP imagery.

Generalized changes in Willamette River Cross-Section 1895-2017

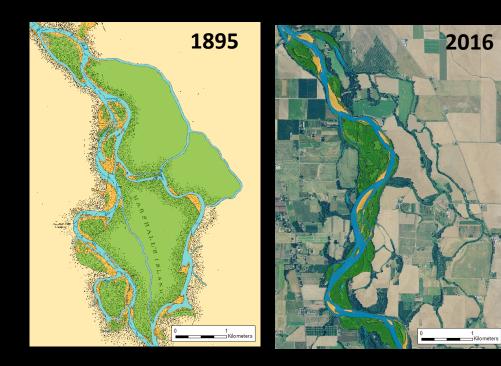
Windsor Island, Willamette River downstream of Salem near Willamette Mission State Park



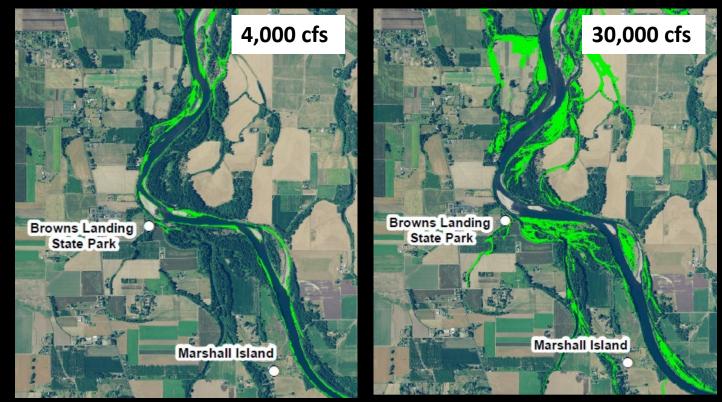

2017 topography from topographic-bathymetric lidar by Quantum Spatial Inc., and USGS boat-based surveys (White and others, 2018). Bathymetry from 1895 approximated from USACE navigational charts. Provisional data and analyses, subject to revision. Prepared by Gabe Gordon, USGS.


Temperature studies provide a foundation for assessing present-day conditions and

addressing assumptions



Thermal profile of the Willamette River: monthly temperatures for July, in 2011, 2015, 2016



Provisional temperature modeling by Stratton Garvin and Rounds, subject to revision.

Example: Habitat availability studies can be integrated with historical channel change to address assumptions and establish management priorities

Pre-smolt rearing habitat for juvenile spring Chinook salmon, Upper Willamette River near Harrisburg

Provisional habitat modeling by White and others, subject to revision.

- Adaptive management requires research and information synthesis
- New science 2008-2021 provides a basis to revisit assumptions and inform adaptive management

• Symposium in 2022 will:

- Synthesize existing information to evaluate and refine assumptions about the river system
- Develop common knowledge foundation and shared vision to inform adaptive management

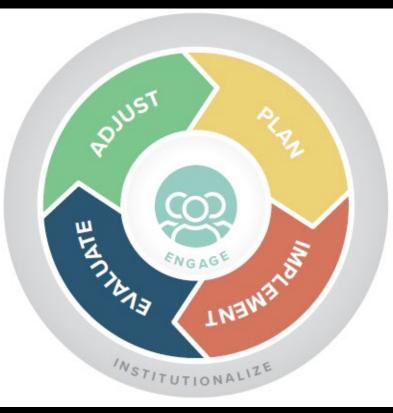


Figure from Warren and others, 2019

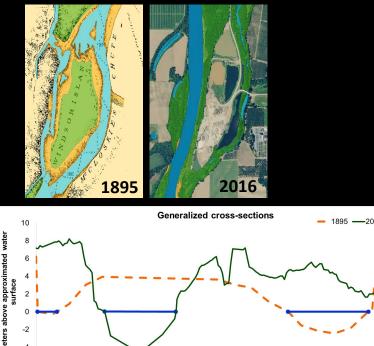
Questions or Symposium Suggestions?

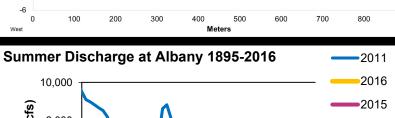
Rose Wallick - rosewall@usgs.gov

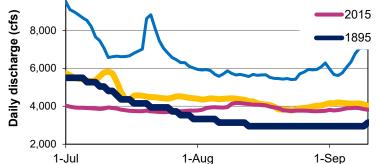
Rachel Laird - rachel.d.laird@usace.army.mil

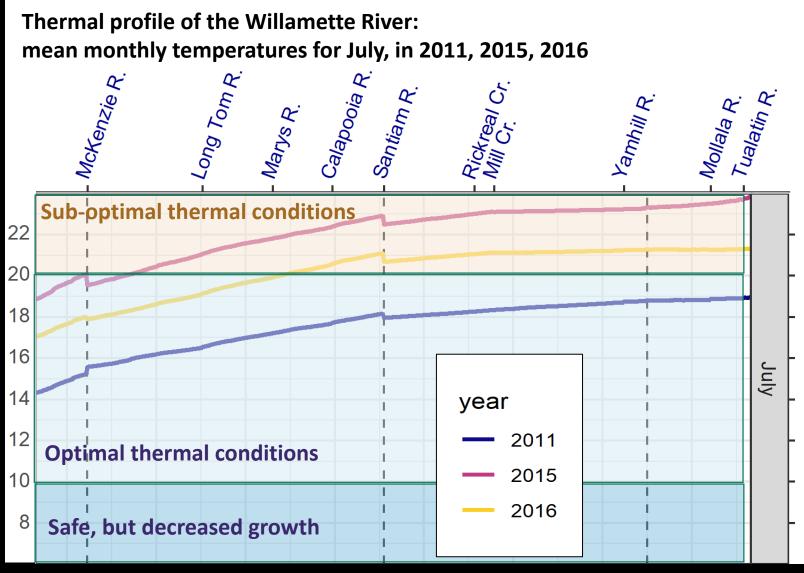
Rich Piaskowski - richard.m.piaskowski@usace.army.mil Toby Kock - tkock@usgs.gov

We appreciate all the individuals and organizations contributing in different ways to the Willamette River knowledge foundation. Co-creating a shared knowledge foundation requires contributions from all perspectives, especially folks with deep 'on the ground' insights gained over decades spent working on Willamette River issues.

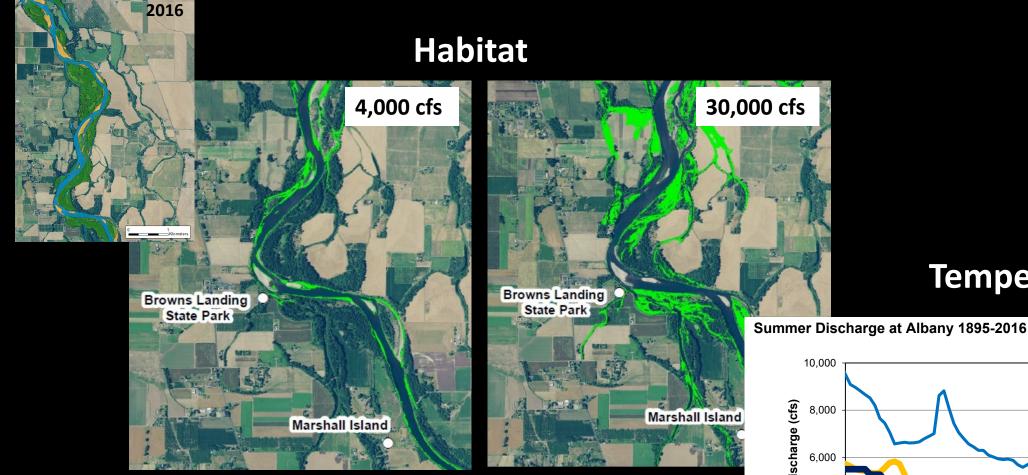



Extra Slides

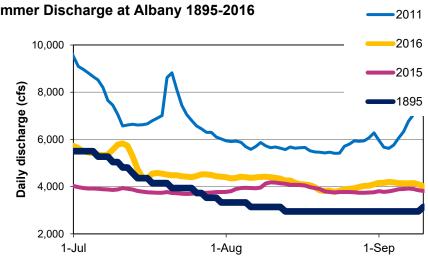

Willamette River gravel bars: 1895-2008

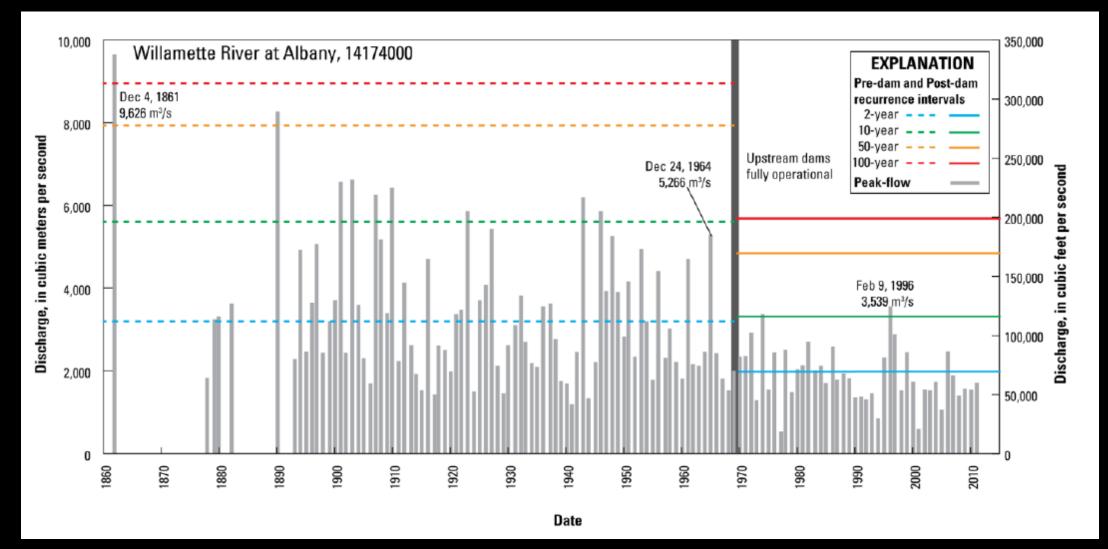


Example: Temperature studies can be integrated with historical channel change to address assumptions and establish realistic expectations



Provisional temperature modeling by Stratton Garvin and Rounds, subject to revision.


Channel conditions


Factors can now be integrated to better inform assumptions and management priorities

Provisional habitat modeling by White and others, subject

Temperature

Wallick and others, 2013

Summary of flood peaks for April 2019 high flow events and comparison with historical events for select Willamette Basin gages below USACE dams

Flood frequency analyses by Adam Stonewall, USGS, stonewal@usgs.gov; summary by Rose Wallick, USGS, rosewall@usgs.gov;

This table was updated June 26, 2019 and superceds previous version shared in April 2019.

USGS Streamflow Gages			Peak April 2019		Approximate	Peak flow of floods of Feb 1996 and Dec 1996 (WY96-97)	Historical peak flow for gage (based on available gage data)		
River	USGS streamflow gaging station name	USGS gaging station number	Discharge (cfs)	date	recurrence interval (RI) of April 2019 events, based on AEP for post-dam era		Discharge (cfs)	date	Notes about USGS gaging record
Willamette	WILLAMETTE RIVER AT HARRISBURG, OR	<u>14166000</u>	78,500		10-25 year RI	83,800	210,000) 12/29/1945	Systematic peak flow records start 1945
Willamette	WILLAMETTE RIVER AT CORVALLIS, OR	<u>14171600</u>	99,000			na	77,100		USGS gage record starts 2010
Willamette	WILLAMETTE RIVER AT ALBANY, OR	<u>14174000</u>	99,200		10-25 year RI	125,000	340,000		Systematic peak flow record starts 1893; estimated peak flows from earlier events
Willamette	WILLAMETTE RIVER AT SALEM, OR	<u>14191000</u>	147,000	4/12/2019 12:00	5-10 year RI	244,000	500,000		Systematic peak flow records start 1910; estimated peak flows from earlier events
Coast Fork	COAST FORK WILLAMETTE RIVER NEAR GOSHEN, OR	<u>14157500</u>	25,000	4/8/19 22:00		33,400	58,500) 11/22/1909	Systematic peak flow records start 1906
Fall Creek	FALL CREEK BLW WINBERRY CREEK, NEAR FALL CREEK, OR	<u>14151000</u>	5,820	4/10/19 23:00		4,640	24,700) 12/111956	Systematic peak flow records start 1936;
Middle Fork	MIDDLE FORK WILLAMETTE RIVER AT JASPER, OR	<u>14152000</u>	24,400	4/12/19 2:30		23,300	94,000	0 11/23/1909	Systematic peak flow records start 1906
McKenzie	MCKENZIE RIVER NEAR VIDA, OR	<u>14162500</u>	25,600	4/8/19 18:45		30,900	64,400		Systematic peak flow records start 1925
McKenzie	MCKENZIE RIVER NEAR WALTERVILLE, OR	<u>14163900</u>	35,800	4/8/19 20:45		56,100	56,100		Systematic peak flow records start 1990 (limited/no pre- idam data)
Santiam	SANTIAM RIVER AT JEFFERSON, OR	<u>14189000</u>	62,000	4/8/19 23:15		168,000	202,000) 11/21/1921	Systematic peak flow records start 1908
South Santiam	SOUTH SANTIAM RIVER AT WATERLOO, OR	<u>14187500</u>	25,500		50-100 year RI	29,200	95,200) 12/22/1964	Systematic peak flow records start 1906
North Santiam	NORTH SANTIAM RIVER AT MEHAMA, OR	<u>14183000</u>	16,800		< 2 year RI	53,800	76,600) 12/28/1945	Systematic peak flow records start 1906